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where b;; are the components of the Reynolds-stress anisotropy tensor b, re-
ferred to an inertial frame. Part of the assumption embodied in Eq. (11.221)
is, therefore, that the principal axes of b do not rotate (relative to an iner-
tial frame, following the mean flow). For some flows, for example those with
significant mean streamline curvature, Girimaji (1997) argues that a better
assumption is that the components of b are fixed relative to a particular
rotating frame.

Exercise 11.30 Consider the algebraic stress model based on LRR-
IP applied to a simple shear flow (Eqs. 11.130-11.134), and obtain

expressions for b;; in the limit P /e — co. Are these values realizable?
Are they consistent with RDT?

Exercise 11.31 Manipulate Eq. (11.219) to obtain

_4bY,

=B (11.222)

Hence use Eq. (11.134) to verify the expression for C),, Eq. (11.220).

Exercise 11.32 Consider a general model for the pressure-rate-of-
strain that is linear in b;; and in the mean velocity gradients, i.e.,
Eq. (11.135) with f®) = f(6-8) —= 0. Show that the corresponding
algebraic stress model (Eq. 11.217) can be written

bi; = *g(%gij + 72 |:§ikbkj + bikgkj - %S\bek(sij]

+’73[Qikbkj - b,kﬁk7]) (11223)

where the coefficients (in general, and for the LRR models) are given
in Table 11.5.

11.9.2 Nonlinear Turbulent Viscosity

The algebraic stress model equation Eq. (11.217) is an implicit equation for
(ujuj)/k, or equivalently for the anisotropy b;;. Clearly, there is benefit in
obtaining an ezplicit relation of the form

bij = By(8. ). (11.224)
where S and € are the normalized mean rate-of-strain and rotation tensors
(Egs. 11.136 and 11.137).
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Table 11.5: Coefficients in Eq. (11.223) for different models.
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Figure 11.21: Reynolds-stress
anisotropies as functions of P/e
according to the LRR-IP algebraic
stress model. The dashed line
shows bi2 according to the k-e
model.
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Table 11.6: Complete set of independent, symmetric, deviatoric functions

’i'(n) of a deviatoric symmetric tensor S and an antisymmetric tensor Q.

Shown in matrix notation: braces denote traces, e.g., {§2} = §U§ﬂ

70 _g 79 -0’8 +80° - 2(8a%)1,
7P -sa-as, 7" -qsa’-a’sq,

,7.(3) _§ %{§2}L 'f'(g) = S0OS? - 208,

7O-at yah 7U-a'e e’ yeah
+(5) _ Qs? _ §20 7'(10) ﬁ§2§2 - ﬁ2§2§

The most general possible expression of the form Eq. (11.224) can be

written
10

B;;(8.9) =Y M7, (11.225)
n=1

A~

where the tensors T(n) are given in Table 11.6, and the coefficients can de-
pend upon the five invariants ngzv (AZZQZ, .§3, Q%gjz and nggji (Pope 1975).
Like b;;, each of the tensors ’i'(n) is non-dimensional, symmetric and devia-
toric. As a set they form an integrity basis, meaning that every symmetric
deviatoric second-order tensor formed from S and € can be expressed as a
linear combination of these ten. (The proof of this is based on the Cayley-
Hamilton theorem, Pope 1975.)

With the specification G(V) = —C,,, G = 0 for n > 1, Eq. (11.225)

reverts to the linear k-e¢ turbulent viscosity formula
bi; = —C,.Sij, (11.226)

or, equivalently,

<uiuj> — %k&u = Cukj <8<UZ> + 8<U7>) . (11.227)
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A non-trivial specification of G for n > 1 yields a nonlinear turbulent
viscosity model, i.e., an explicit formula for (u;u;) that is nonlinear in the
mean velocity gradients.

For flows that are statistically two-dimensional, the situation is consid-
erably simpler. The tensors ‘?(1), 72 and ?'(3) form an integrity basis,
and there are just two independent invariants §,§k and Qik (Pope 1975,

Gatski and Speziale 1993). Consequently G®W — GU9 can be set to zero.

Furthermore, the term in 7A'(3) can be absorbed in the modified pressure
(see Exercise 11.33) so that the value of G®) has no effect on the mean
velocity field. With G®) = 0, the nonlinear viscosity model for statistically
two-dimensional flows is

bij = GOT + aOTD, (11.228)
or, equivalently,

2
L

3

(uiuj) - %kéw == 2G(1

One way to obtain a suitable specification of the coefficients G is from

an algebraic stress model. Since the nonlinear turbulent viscosity formula

Eq. (11.225) provides a completely general expression for b;; in terms of

mean velocity gradients, it follows that to every algebraic stress model, there

is a corresponding nonlinear viscosity model. It is a matter of algebra to

determine the corresponding coefficients G™). For example, for statistically

two-dimensional flows, the coefficients G corresponding to the LRR-IP
algebraic stress model are

dV=—c, ¢»=-xc, G¥ =2, G0 =0 = (11.230)

where (1)
A= 2 11.231
Cr—1+ P/6’ ( )
and
2\
C, = 3 (11.232)

1— 2X282 — 2220
see Exercise 11.36. Figure 11.22 shows —G() = C,,, and ~G?) = \C,, as
functions of Sk/e and Qk/e (where Q = (2(_2”5_2”)%)

(The nonlinear viscosity model defined by Eqgs. (11.230)-(11.232) is not
completely explicit, because the definition of A contains P/e = —2b;;S;;.
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Figure 11.22: Contour plots of (a) C,, = —G"), and (b) —~G®, for the LRR-TP
nonlinear viscosity model (Egs. 11.230-11.232).

Girimaji (1996) gives fully explicit formulae, obtained by solving the cubic
equation for A, see Exercise 11.36.)

Taulbee (1992) and Gatski and Speziale (1993) extend this approach
to three-dimensional flows where, in general, all ten coefficients G™ are
non-zero.

Nonlinear viscosity models, not based on algebraic stress models, have
been proposed by Yoshizawa (1984), Speziale (1987), Rubinstein and Barton
(1990), Craft et al. (1996), and others. The first three mentioned are
quadratic in the mean velocity gradients, and so G(") — G*) are non-zero.
In the model of Craft et al. G©®) is also non-zero. In addition to mean velocity
gradients, the models of Yoshizawa and Speziale also involve DS;; /Dt.

Exercise 11.33 Consider a statistically two-dimensional turbulent flow
in the z; — x5 plane (so that (Us) = 0 and 9(U;)/dx3 = 0). By evalu-
ating each component, show that

N o)~
82 = 150082, (11.233)
where
100
=101 0. (11.234)
000
Hence show that
—(3 a2 ~(0
T = _52, T, (11.235)
where © @
—~(0) _ 2
Ty =56 — 50 - (11.236)



